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ANGULAR DISTRIBUTION OF EMITTED AND REFLECTED RADIANT
ENERGY FROM DIFFUSE GRAY ASYMMETRIC GROOVES

By Morris Perlmutter and John R. Howell

SUMMARY 0> e

The directional emissivity and directional reflectivity of an infinitely
long isothermal asymmetric groove with diffusely emitting and reflecting gray
walls are analyzed, and numerical results are gilven. The directicnal emissivity
is presented as a function of the groove parameters and material emissivity,
while the directional reflectivity is presented as a function of these parameters
and the angle of incident radiation. The directional reflectivity was found to
be greatest at angles close to the angle of the incident beam, in sharp contrast
to the commonly assumed diffuse or specular modes of reflection. The directional
emissivity was greatest close to the angle bisecting the groove. The results
thus indicate that the surface structure has a strong effect on the radiative
properties. Some examples of radiant-energy interchange between surfaces with
directional radiative properties are used to illustrate the large effects of
these surfaces on the energy interchange. The examples also illustrate how the
radiant interchange can be controlled to some extent by proper design of these
surfaces. The analysis is restricted to grooves with dimensions that are large
in comparison to the wavelengths of the radiation considered. Qor o

INTRODUCTION

The surface structure can have a strong influence on the reflective and
emissive properties of materials. Not only can the absolute values of the emis-
sivity and reflectivity be changed, but the emitted and reflected energy can be
strongly directional because of the macroscopic surface structure. Calculation
of radiant interchange between surfaces based on the usual assumptions of diffuse
emissivity and specular or diffuse reflectivity can lead to large deviations from
the actual values (refs. 1 to 3).

The particular surface configuration of asymmetric grooves was chosen to in-
dicate this effect and to show how, by proper design of surfaces, the radiant
heat transfer can be controlled to suit specific needs. Thus, it is possible by
design of surface structure to exercise some control over radiant interchanges.

The model to be analyzed, shown in figure 1, consists of an infinitely long
groove. One side of the groove is taken to be perpendicular to the base plane,
the other to be at some angle 6 from the vertical side. The wall surfaces are
assumed to be gray and to emit and reflect diffusely. The environment is assumed



to have no effect except that there 1s incident radiation on the surface from an
emitter at a given angle. In reference 1, the directional reflectivity and di-
rectional emissivity of a groove are treated when the walls of the groove are
considered to be specularly, rather than diffusely, reflecting, as in the present
cage. The case of dilffusely reflecting symmetric grooves is analyzed in refer-
ences 4 to 6 for the total absorption and emission, but the directional emission
and reflection are not considered.

In the present analysis, general equations for radiation from grooves are
glven. The general equatlions are separated into equations for directional emis-
slvity and directional reflectlvity. Both an exact and an approximate method of
solution are given. In the approximate method, the groove surface is divided
into large portions, each conslidered to have an average thermal flux.

SYMBOLS

Aq,As,Az A defined in eqgs. (A15) to (A18), respectively

dAp, ,dAp, area of flat black elements (fig. 2)

dAg area of cavity opening

D offset distance of plate divided by distance between plates

AELAR width of emitter and receiver, respectively

e energy racio fram groove wall, qo/qb

szdA—dB shape factor from infinitesimal element at A +to infinitesimal
element at B

F exchange factor

H helght of groove wall normal to base plane

1,1, defined by egs. (9) and (14)

K xernel, (sin20)Xy/(X2 + Y2 - 2XY cos 6)%/2

L length of oblique groove wall

Q thermal power; heat rate

q thermal fluxj; heat rate per unit area

r energy ratio reflected from groove wall, qo/[qu(cos n')(an'/2)]

T absolute temperature of surface

X distance along oblique side divided by H



Y distance along side normal to base plane divided by H

Z coordinate normal to XY-plane

o3 absorptivity

B angle between normal to X-surface and line from recelver to groove
p' angle between normal to X-surface and line from emlitter to groove

€ emissivity

1 angle between normal to base plane and line from groove to receiver,

6 +p - (n/2), deg

n angle between normal to base plane and line from groove to emitter,
6+ p' - (ﬂ/Z), deg

e angle between walls of groove, deg

) width of surfaces divided by distance between them; aspect ratio

14 position along base plane

o reflectivity, 1 - €

g Stefan-Boltzmann constant

o© angle between normal to diagonal wall and line from point X to point

W angle between normal to vertical side and line connecting points X
and Y

Subscripts:

b black

C cavity

D diffuse surface

AF emltter

f flat surface

G groove

1 total energy incldent on a surface

1 lower limit

o] total energy out including both reflected and emitted energles



P perfect surface

AR receiver

r radlated

t total

u nonirradiated

W wall

X at point X

Y at point Y

¢ solution for reflectance
13 solution for emittance
Superscripts:

) integrated average value

(") incident beam

ANATYSIS

The model analyzed is shown in figure 1. There is a groove of infinite
length in a plane. The short side of the groove is normal to the base plane and
of height H and will be referred to as the Y-surface. The diagonal side is of
length L and will be referred to as the X~surface. There is an open angle 6
between the sides of the grooves. The surface of the groove walls is assumed
gray with constant emissivity ey and constant wall temperature Ty The re-
flection and emission from the wall are considered diffuse. The environment is
assumed to have no effect.

Emitted and Reflected Energy from Groove

The rate of energy per unit area, thermal flux, leaving an element as X,
can be expressed as

Tox = %y * Pydix (1)

where Q;; 1s the energy emitted from the surface element at X, p,; 1s the re-
flectivity of the surface, and Q4x 1s the total incident flux. The flux is in-

cldent on the element at X from two sources, the Y-surface and an external
source. The part of the thermal power per unit width leaving an infinite strip
on Y, which is intercepted by the element dZ H dX at X, after using the re-
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ciprocal relation dX dZFay_gqy = dY d%F4y_gx 1s
aoy & H aX d%Fgy_qy (2)
From reference 7, the shape factor 1s
1 .

where ¢ 1is the angle between the normal to the X-surface and the line between
the elements dX and dY. From figure 1 it can be found that

sin @ = Y cos 8 - X 1/2 (4)
(Y2 + X2 - 2XY cos 9)
and
s 2
d(sin @) = (sin”6)XY dy = K(X,Y)ay (5)

3/2
(Y2 + X2 - 2XY cos 6) /

To get the total flux from Y dincident on the element at X, equation (2) must
be integrated between the limits sin wlY=O = -1 to sin ¢,Y=l‘

There is flux q,p being radiated to the groove from an external source of

width AE and of infinite length in the Z-direction. The angle between the nor-
mal to surface X and the beam from the emitter to X 1s B', as shown in fig-
ure 1. Assuming the distance between the emitter and the groove 1s large com-
pared to the dimensions of the groove, the angle B' can be considered constant
over all X. The power arriving at X from the emitter is

g A (6)

The total flux leaving an element at X 1s then
1
Pyr :
Uox = U * 3 / aoyK(X,Y)aY + e qpI; (B',X)AB] (7)
0

where I7 1s equal to zero for the part of the X-surface that cannot see the
emitter and cos B'/Z for the part of the X-surface that can. An angle 7' can
be defined as the angle between the normal to the base plane and the incident
beam. This can be shown to be

N =6+pB" - (8)

ao]

Thus, with each fixed n' from -n/z to +n/2, I; will be zero on the X-



surface except 1in the cases

6>1n' >0; all X

1
I = coz B (9)
o> >-.g_; X>er

where sz is the lower limit of the X-surface that can see the emitter and can
be shown to be

-+ 1
Xy _cos{8+B) (10)

cos B'

Tt can be seen from equations (7) and (9) that 4oy 1s discontinuous at
X = X;: 1in the cases where 0 > n' > -(x/2).

A procedure similar to that preceding can be carried out for the Y-wall to
find Qoy- Let @ be the angle between the normel to Y and the line connect-

ing X and Y as shown in figure 1. Then

Y - X cos 8

sin w = (11)
(X2 + Y2 - 2XY cos 9)1/2
d(sin w) = -K(X,Y)dx (12)
. 0
Uy = U - 3 0oxK(X,T)aX + pLa pIo(B',Y)AB" (13)
l/cos 6

The term I agaln depends on Y seelng the emitter; Ip will be zero except in
the followlng cases:

gz2n' >0;all Y cos(8 + B
12=-—£——E-)-2 (14)
-g-ZT]' >0; Y >¥qr

where Y,, 1is the lower limlt of surface Y +that can see the emitter and is
found by

_ cos B'
Ty = cos 6 cos(pB' + 6) (15)

As before, g,y 1s discontinuous at Y,, for /2 >n' > 6.

Since equations (7) and (13) are linear, the problem can be separated into
simpler parts that can be added for the complete solution. The term dox can be
represented by the sum of two cases:

dox = doX,¢ t 90X, ¢ (186)



where 40X, & can be considered to be the total flux for the case in which there

is no external source and the wall temperature of the groove is constant at Ty,
and  Qgx £ ig the total flux for zero wall temperature; that Is, no emission
2

from the wall, with an incident beam from an emitter at angle pB'.

Similarly, Aoy is

= , 7
Yy = %ov,e " %ov,¢ (17)

Substituting equations (16) and (17) into equations (7) and (13) and letting the
£lux from the external source be zero give the solutions for emission from the
groove. These may be nondimensionalized and expressed as e/e, the total flux
leaving the surface divided by the flux emitted from the surface:

1
e- q o) e
L L x(x,y)ay (18)
W %y €
0
5 l/cos &
e q, y e
_.Y____._OXJ..E‘_: l+_E —XK(X,Y>d_X (19)
€ a. 2 €
W W 0 W

If, instead, the wall temperature is held at zero, the solutions for rellection
from the groove are

q z2p, 1 P, 1
ry = oX, S l| 4 f ryK(X,Y)aY (20)
(cos 1") S o8 ¢
Qopt ©0° T 2
g 2p. T o l/cos &
. - oyt _hulz  w f P K(X, ¥) X (21)
oy A cos 7 2
agplcos 1) = 0

The term r is the ratio of Tlux reflected from the groove wall to total rlux
incident on the groove. Equations (18) to (21) can be combined by means of equa-
tions (16) and (17) to cbtain the complete solution of emission and reflection
from the groove wall.

Radiation to Receiver at a Given Direction from Groove

The power radiating from the surface of the groove in a particular direction
to a receiver can be calculated as follows: A receiver of wildth AR  and infi-
nite in the Z-direction is located so that it will intercept the total radiation
leaving the groove in a given direction B. The thermal power reaching the re-
ceiver from the part of an element of width dZ on side X directly visible to
the receiver 1s
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l/cos 6
L5 b ns / ay X (22)

where $ 1is the angle between the normal to side X and the line from X to
the receiver. The receiver is consildered to be far enough away in comparison to
the dimensions of the groove so that B can be considered constant for all X.
The lowest point on wall X +that 1s visible to the recelver is Xy

The power reaching the receiver from an element d2Z on side Y 1is
cos(6 + Q} L
Qy_ag = -H a4z 5 AB _4‘1 Q.y Y (23)

The total power arriving at the receilver from one groove is then

l/cos 6 1
Qg = H &2 EE%}jiﬁﬁ d/ﬁ qx X - H az Egﬁig_i_ﬁl.éﬁ J/. aoy dY
Xy Y

1
(24)
The limits on the integrals can be determined from the following:
0<n<6: X;=0;Y;=0 )
n, I _ -cos B
b<ns3 X = cos §° 11 = cos 6 cos(p + 9) f (25)
S ; o cos(9 + B) . _
_ZST]SO. XZ cos B ,Yl—l J

Again, Q;_ARr can be broken into two parts, one for emission and one for reflec-
tion:

W-AR = W-AR,¢ * W-AR, ¢ (26)

The emlssion from a black surface on the base plane of area equal to the
base of one groove that is incident on the receiver is

QAR = $pH dZ(tan 6)(cos 1) %?— (27)

Using this to nondimensionalize QGHAR,g gives the directional emissivity

€ = 9%-AR,E _ _ cos B fl/cos ° co ax - 08(8 * B) . ey dY (28)
= = x - .
n QAR cos n tan 6 Jy cos n tan 6 Y,



which is the ratioc of power reaching a receiver at angle 1, from the groove to
that that would reach the receiver from a black groove. The power from the emit-
ter incident on the base area H dZ tan 6 of one groove is

Qp_y, = dopH az(tan 9)(cos 1') é%; (29)

This is also the total power incident on a width dz of the groove. Nondimen-

sionalizing QGﬂAR 3 by equation (29) gives the directional reflectivity of the
b

groove:

1 g 1
_QG"AR;Q_COS Béﬂf /COS erX—-C—OS—(e—LEl%D'/‘ Ty ay

Pt = =
RN Q1 tan 6 2 %, tan 8 Y,

(30)

This directional reflectivity of the groove can be compared with the direc-

tional reflectivity 63 of a flat diffuse surface with reflectivity 0y

n‘,n>f
This will be defined by

(pn';ﬂ)f = p, _(cos 1) égl (31)

Dividing equation (30) by equation (31) gives

1/cos @ 1
o B}
0 L cos B _ _cos(6 + B)
o " p, cos M tan O rx X P, cos 7 tan 6 ry &
N ) X Y,

(32)

NUMERICAL SOLUTION

Equations (20) and (21) were solved for ry and ry by an iterative numer-
ical procedure. Initial values of Iy were assumed and substituted into the in-

tegral in equation (20). This integral was then evaluated numerically to give
values of ry. These values were used in equatlon (21) to obtain new values of

ry. This procedure was continued until convergence was obtained. A difficulty

arose because of the integrand approaching infinity when both X and Y ap-
proached zero. This required the use of an analytical solution to evaluate ry

at X of zero and ry at Y of zero and the use of smaller increments of X
and Y near zero. For some of the cases, there was a discontinuity in ry or
Ty- This required that special care be taken in numerical integration through
the discontinuity. The region was broken into two parts around the discontinu-
ity, and each part was integrated separately. Increment sizes were reduced until

9



the solutions did not change.

After ry and ry were obtained, they were substituted into equation (32),
which was numerically integrated to give the directional-reflectivity ratio

pﬂ',ﬂ/(pﬂ':ﬂ)f'

The method for finding ey, ey, and en follows a similar procedure. A

discussion of an alternate approach for finding ey and ey with a method for
speeding convergence 1s given in reference 6.
Values of Emissivity and Reflectivity at X and Y of Zero

The 1limiting values of r and e can be found as follows: From equa~-
tion (20), ry at X of zero is

1
o 20,1
ry = =X sin?o T XY dY + —p—W-—JTT (33)
X=0 2 - o 3/2 cos 1
(X% + Y2 - 2XY cos 0)7 |y o
The integral can be evaluated as in reference 4. There, 1t 1g clear that
rXIX:O == rY'Y—»O (cos 8+ 1) + m- (34)
Py zprZ
rY|Y==O == rXIX—-;O (cos 6 + 1) + ?O—S_T]-'— (35)
and
| eyl (1% cos 6) (36)
e =—=ce cos
Xlx=0 = 2 “Ylywo Sw
] ¥ o], 6) + (37)
e = — O + cos
Tiy=o = 2" “Xlxs0 S
The equations for e l and e , can then be gimplified to glve
¢ X)x=0 Tly=o P &
€y
= = 38
eXlx:o eYIY:O o (38)

l-—g—r(l+cos 9)
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Approximate Soclutions for Emissivity

One means of obtaining an approximate solution is to assume constant average
values of total emission over finite segments of the groove wall. For the sim-
plest case, where the segment is equal to the length of the groove wall, the av-
erage value can be defined as follows:

l/cos )
ey = cos 6 f ey dX (39)
0
1
ey = f ey aY (40)
0
As shown in appendix A, the approximate directional emissivity 1s then
(cos B)ey 1 cos(6 + B)Ey
€, = ( - 1) - (1 -vy) (41)
n =~ (tan @)cos n\cos @ (cos n)tan ©

where the values of X; and Y, are given by equations (10) and (15), respec-
tively, after replacing B' by B. The values of Ek and E& are glven by

equations (A4) and (A5). A similar approximate method was used in reference 6
except that a linear variation over the segment was used rather than the wall
emission being constant over the segment.

Approximate Solutions for Reflectivity

Approximate solutions for the reflectivity can be obtained in a somewhat
similar manner. Since the part of the groove wall that is irradiated directly
by the emitter will have a larger amount of energy reflected than the nonirradi-
ated portion and since the reflected energy is also discontinuous at the Junction
between the irradiated and nonirradiated portions, it is necessary to divide the
problem into separate mean values for the lrradiated portion and for the remain-
der of each wall. These portions can again be subdivided for greater accuracy.
For the simplest case of no subdivision of the segments, the mean values are

- 1 l/cos 9 j

(42)

11



1 1
I'Yr = z_‘—'—'-'y'l = Yzy .4- I'Y dy
!

YZY
Tvy ':X.—Z—'— 4‘ Ty day

where X;. and Y;. are obtained from equations (10) and (15), respectively,

1

and the subscripts r and u refer to the irradiated and nonirradiated seg-
ments, respectively. The ratio of the energy reflected to a receiver to that re-
flected by a flat diffuse surface is then, from equation (32) and appendix A,

—

""——l - .
r}&'(COS 6 - XZ') * rXU(XZ' = XZ) if sz > XZ

Pnn L cos B
.. cos 1 tan 6
(pﬂ'ﬂl)f v

-_—

1 .
I'Xr(m - Xz> if le < XZ

Tyl = ¥y0) + Ty (Y0 - Yy) i ¥y, > 1,
cos(6 + B)
cos n tan 6

+

(44)

Py

rYr(l - YZ,) if Y, <7,

where the r terms are defined by equations (A7) to (A17).

The solution will depend on which part of the wall is illuminated, and so
three regions are possible:

(1) Wnen only part of wall X is illuminated (0> 4' > - Z), then T, =0,
cos{6 + B')

Y,. =1, and X, = cos B

¢

5 > > 9), then Ty, = 0,

(2) When only part of wall Y is illuminated (
cos B'

cos 6 cos{B' + 6)°

(3) When both X and Y are fully illuminated (6 > n' > 0), Tyy = Tyy = O
and. Xzy =YZ[ =O-

1
Xzy =€5§,——9—, and sz =

Relations Between Directional Radiative Properties
The directional reflectivity can be related to both the directional emissiv~

ity and directional absorptivity by use of figure 2, as has been shown in refer-
ence 1 and 1s summarlzed in appendix B. This gives the relation

1z



€ = g (45)

C,yn 57

The directional reflectivity may then be related to the directional emissiv-
ity as follows: The difference between the energy of the incident radiation from
direction 7' and the total reflected energy must be the energy abgsorbed by the
groove. This can be written as

n/z

Ppt,n Py €08 1

(On, n) > (46)
o

-n/z

This equation was used to check the reflectivities and emissivities obtained in
the numerical calculations. A reciprocal relation between the reflectivities is
also obtained in appendix B. For the present gecometry, the relation is

Onien Py (47)
Pyt ¢ pn,n')f

RESULTS
Fmissivity Results

In figure 3 are shown ey and ey, the total energy leaving a groove wall

of emissivity ¢y compared with the emission from a black groove wall. In fig-
ure 3(a) this comparison is shown for groove angles € of 18° and 60° with wall
emissivity ¢, fixed at 0.1. It can be seen that ey and ey become larger

near X and Y of zero. This is due to multiple reflections increasing the
apparent emission from the surface in this region. This effect 1s less apparent
for the larger angle 6 = 60°, and for this case the emlssion at the outer edge
of the groove wall is close to the direct emission of the groove wall. In fig-
ure 3(b)}, the effect of varying emissivity ey 1s shown. This lower ¢y causes
ey and ey to rise sharply near X and Y of zero because of the increased

interreflections at that point.

The directional emissivity Eﬂ 1s shown in figure 4 for various groove

angles and wall emissivitles. The directional emissivity is higher in every di-
rection for the groove than for a flat wall of the same wall emissivity. The en-
ergy emlitted in angles zero to 6 1s larger than that in other directions be-
cause of the interreflections at the base of the groove. The approximate solu-
tion yilelds curves that appear almost diffuse and deviate from the iterated solu-
tion. The approximate solution would be more correct if the groove wall were
divided into segments.

Also shown is the directional emissivity from a symmetrical groove, calcu-
lated from results in reference 6. The values e = ey = ey Wwere calculated from
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values shown in reference 6.

The directional emissivity was then numerically calculated from

1 1 1
ey = = | cos B f e dX ~ cos(6 + B) e dY (48)
2 cos 71 sin = XZ YZ

which was derived similar to equation (28).

Reflectivity Results

In figure 5 1s shown the thermal power reflected from the groove walls ry
and ry for both the approximate and the iterated solutions. The high value of
ry for ' = 60° occurs where the wall is 1lluminated by the incident radia-
tion. The discontinuity discussed earlier 1s evident.

The peak of ry for a 60° incident beam occurs on the X-surface at an XH/L

of about 0.63. This is the point on the X-surface that receives the greatest
amount of power reflected from the directly illuminated porticn of the Y-surface.

For the 1° incident beam, the entire groove surface is illuminated; however,
the peaks of ry and ry occur at X and Y of zero because of the many re-

flections at this point.

In figure 6, the directional-reflectivity ratio p.s /(p ' ) is pre-
n 0 T on/e

sented for various incident beam angles 7'. This is the ratio of the direc~-
tional reflectivity of the groove to the directlonal reflectivity for a flat sur-
face with the same diffuse reflectivity as the groove wall. The resulting re-
flectivity 1s neither specular nor diffuse. Instead, the energy i1s reflected
most strongly in the direction of the incident beam.

The largest values of the directional-reflectivity ratio occur for the larg-
est absolute value of incident angle, since, for those cases, the ratio of the
illuminated area of the grooved surface to the area of the flat surface of com-
parison is a minimum.

The iterated directional reflectivities are plotted for comparison with the
approximate solution, and the agreement for large absolute angles 7' 1is seen
to be good. In figure 7 1s shown the effect of groove angle 6 on the reflec-
tivity ratio for various incldent angles. When the groove angle is near 90°, the
surface 1s practically flat, and the reflectivity ratio approaches 1.0.

The smaller values of the individual curves occur when only the unillumi-
nated portion of the groove can be seen. The larger reflectivity ratio occurs
when the recelver sees only the illuminated part of the groove.

In figure 7(a) the results for an incident beam at 1° are given. An almost
diffuse reflectivity is obtained for © of 89.9°.
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In figure 8 is shown the effect of wall reflectivity on the groove
directional-reflectivity ratio. The curves are similar in shape but show in-
creasing values for increasing wall reflectivities.

BEHAVIOR OF SURFACES WITH DIRECTIONAL EMISSIVITY

To illustrate the use of directional surfaces in radiant interchange, the
model shown in figure 9 is used. It consists of two semli-infinite parallel
plates of dimensionless width = separated by a distance 1. They are offset by
o dimensionless distance D. The upper surface is black (&y = 1) and at tempera-
ture Ty. The lower surface has a directional emissivity €n and 1s at tempera-

ture Tg. The surrounding environment is at temperature Tg. The net power
transferred between the surfaces can be written following Hottel (ref. 8) as

= F & &zo(Tg - 1g) (49)

Wa
where 3rbG is the net exchange factor. This exchange factor indicates the

ability of two surfaces to exchange thermal power and is only dependent on their
geometry and emlssivity. In order to find 3rbG’ it must be assumed for simplic-

ity that the black surface 1s at Ty 0; then the net power exchanged between
the two surfaces is

Il

[1]

T]u
Qg = oL oz (¢, 2252 anar (50)
0 My

Using equation (49) and the reciprocal relation Al§7i_2 = Azégé_l results 1in

It

T
T = % / ) (en = d”)dg (51)
0 My
From figure 9, it can be seen that
n, = arc tan(D - &) (52)
n, = 8rc tan(= + D - €) (53)

An additional relation can be obtained as follows: If the black surface and the
environment are considered to be at T = 0° absolute, the emission from the di-
rectional surface will be the total of the emission to the black surface and the
emission to the environment:
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]

ﬂ/z
/ (en 20_;__& dq)dé (54)

l i
fGt=be+-%E= /
0 —ﬂ/Z

It can then be seen from equations (51) and (54) that

Ir]

UF) n/2
fGE = % / + (En ———M; dn) at (55)

n/z nu

For a good absorber, it is desirable to gain as much power from the black emit-
ting surface and to lose as 1little energy to the envirconment as possible. This
same condition would apply for a good emitter, where it is desirable for as much
energy as possible to travel from the directional to the black surface, but as
little as possible to travel to the environment.

Then, for a good absorbing or emitting directional surface, the following
must be maximized:

ny ny n/2
et [ [ [ ]
0 n -1t/2 M

u

1]

This will be a maximum if a "perfect" absorber is assumed with € = 1 for
Ny = 1> 1y and Eq = 0 otherwise. Then

(be B '?—GE)P - E%{[l + (D + E)E:Il/z + [l + (D - 3)211/2 - 2(1 + Dz)l/z}
(57)

For a diffusely absorbing or emitting surface, ¢_ = €y & constant, to give

1
(fbe - fGE)D = €w[2 (-713@ - fGE>P] -1 (58)

In figure 10, the perfect and diffuse surfaces are compared with various direc-
tional surfaces.

It is alsoc of interest to calculate the equilibrium temperature that these
directional surfaces would attain if they were considered insulated from conduc-
tion and convection and were receiving radiation only from the black emitting
surface. The environment is considered to be at Tp = 0° absolute. For this
case,



4 4 4 _
Foo(Th - Th) + Foglg = 0 (59)

which becomes

4
T T _ LI (60)
¢ Fg Foe - FoE
b v 2 - |

bG

The fraction Té/T% is also the fraction of the total energy leaving the direc-

tional surface that reaches the black surface. For the diffuse case, equa-
tion (60) can be written as

(TG . [l + (2 + d)ﬂl/z + [1 + (= - d)zjl/z -2(1 + dz)l/2
<) :

= (61)
and, for the perfect case, the temperature ratio ('I‘G/‘I‘b)4 is unity. The equi-

—
2!—1
—

D

librium temperature ratiog for variocus cases are plotted in figure 11.

It is seen from figures 10 and 11 that it 1s possible to vary the heat ex-
change between surfaces by a large margin through proper design of the direc-
tional surface to attain the desired directional radiative properties.

In figure 10, for an offset distance of 1.0, it can be seen that surfaces
with directional emissivities can be chosen as better absorbers or emitters than
diffuse gray or black surfaces over certain ranges of =. In figure 11, the
equilibrium temperature ratio of the directional surfaces 1s always higher than
that of a black diffuse surface for the case analyzed.

A surface with properties quite similar to those of a perfect surface is
analyzed in reference 9.

CONCLUDING REMARKS

This analysis shows the large effects on radiative surface properties that
surface 1rregularities may have. Since the wavelengths of thermal radiation may
be quite small, the size of irreguwlarities that can cause these effects is also
small. Thus, great care must be taken in surface preparation of samples for
measurement of radiative properties, as there can be significant differences be-~
tween the apparent and actual properties.

The results show, too, that the directional radiative properties of surfaces

can be controlled by design, and thus radiative interchange between bodies can
also be controlled.
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The usual assumption of diffuse emisslon is not true for grooved surfaces
since the emissivity will be highest for directions bilsecting the opening of the
grooves. Similarly, the assumption of diffuse or specular reflections is not
true since, in the case of grooves, the energy 1s primarily reflected in the di-

rection of the incident beam.

Lewis Research Center
National Aeronautics and Space Administration

Cleveland, Ohio, June 24, 1963
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APPENDIX A

APPROXIMATE SOLUTION

Approximate Solutions for Emissivity

One means of obtaining an approximate solution is t
values of total emission over finlte segments of the gro
plest case, where the se
erage values can be defined by equations (39
and (19) become

) and (40).

gment is equal to the length of the groove wall,

o assume constant average
ove wall. For the sim-
the av-
Then, equations (18)

— — 1/cos 6 sin
ey Py cO8 8 ey / ®|Y=l
DS T h = d sin ¢ | &X (A1)
€ 2 €
W W
Q sin 9|yo
1 sin w
'e'Y QW €X IX:O
= =1+ = d sin w |dY (A2)
Cw Sw ;
sin d)|X=(l/cos o)
Fvaluation of the integrals is simplified by noting that
af
sin Q= EX—
(A3)
gsin w = - 23
- day

where f = (X2 + Y&
(A1) and (A2) become

- o [T
—l=l+—-21—¥-(cos(9-sin9+
Cw Cw

€. o €.

-—Y=l+-2——-w——-§ -;-)E (cos@—sin@

€ cos €y

Equations (A4) and (AS5) are solved simultaneously.
would apply if each groove wall were divided into k in
gset of 2k equations in

1
- 2XY cos 8) /2. After evaluation at the limits, equations

1) (A4)

+ 1) (A5)

This same procedure
crements, leading to a

2k unknowns, and would give more accurate results.

The emission picked up by a receiver can be found from equation (28) as
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(cos p)ey ( 1 ) cos(6 + B)&y ) )
“n = TXan 8)cos n \cos 6 = “1) T {cos n)tan © -1 (a6
where the values of X; and Y; are given by equations (10) and (15), respec-
tively, after the replacement of B' with B.

Approximate Solutions for Reflectivity

Approximate solutions for the reflectivity can be obtained in & similar
manner. Since the part of the groove wall that is irradiated directly by the
emitter will have a larger amount of energy reflected than, and is discontinuous
from, the nonirradiated portion, it is necessary to divide the problem into sepa-
rate mean values for the irradiated portion and for the remainder of each wall.
These portions can again be subdivided for greater accuracy. For the simplest

case of no subdivision of the segments, the mean values are glven by equaticns
(42) and (43).

Equations (20) and (21) then become

l/cos 6 sin ml
- 20y 11 +( 1 2 )72 / o f— Y=1
Xr T Tos 1 cos 6 ZJ Z |\ d sin @

le sin CP,Y=YZK
Sin CPIY=Y11
+ Ty, d sin ¢ Jax (A7)
sin q’,Yzo
N in o, sin QIY=1 Sin|Y=YZ|
Tyu = i?T | Tyr d sin ¢ + Tyvu d sin ¢ }aX
0 sin (PIY=Y11 sin cp|Y=0
(48)
1 sin w,
Ty, = o5 7 + e Yl') = | Txy d sin w
¥y sin le:(l/cos 9)
sin le=O
+ ?kn d sin w lay (A9)
sin w'

X=XZ !

20



Y sin o 8in w
Ty = ?;T ??- Tyr d sin w4-rXu d sin w |d¥
0

51n 0]y.(1/cos 6) sin “lx:xz,
(A10)

With the relations in equation (A3), the previous results can be integrated

to
Txr = 7?-<cos 9~ XZ' (rYrAl N rYuAZ) * cos 7' (A1)
T, = m (Fphs + Tk (a12)
Xu 2X7 1 Tu™3 Yu't4
—_— Py - . prlz
Tyr T HT S50 (Faehs *+ The) + 5mor (A13)
T, - ey (Fhe * Fushe) )
Yu = 2Y; Txpho + Ty (ALs
where
1/2 1/2
Al = (X%v + 1 - ZXZI cOs 9) + (Y%x + 129 - 2Yz|> - tan 6
cos

1/2
- (X%, + YZ, - 2X,,Y,, cos 0) / (A15)

1/2 1/2
ay = (5 + Y5 - 2xy¥y cos 6) /2 (yé, - 2Yq. + ——3——> /2, ( - XZ.)

cos?8 cos
(Al6)
1/2 1/2
Ay = (55 + ¥§h - 2xq¥q cos o) 77 o (xB v 1 -2k cos 6) T+ (1= 1y)
(A17)
1/2
_ (2 2
Ay = (X, +Y,,) (x2, + ¥2, - 2x,.¥,, cos 9 (A18)

The terms X;:, Y+, I, and I, are defined by equations (10), (15), (9),
and (14), respectively.
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The energy reflected to a receiver, then, from equation (32) is,

-

- N B |
rxr(COS 6~ XZ') + rXu<XZ' - XZ) if sz > XZ

P, cos B

( W',ﬂ)f P, cos n tan @

—_ 1
_I'XI.<E'6§-—9 - XZ) if Xln < XZ

rYr(l - YZ,) + rYu(YZ, - YZ) if Y, >7Y,

cos(@ + B)
cos 1 tan 6

+

o (A19)

Ty (1 - YZ,) if Yy, <Y
L.

1
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APPENDIX B

RELATIONS HETWEEN GROOVE PROPERTIES

Consider a flat black element dAp; and a cavity of arbitrary shape with an
opening of area dAg as shown in figure 2. These are in an isothermal enclo-

sure. The radiative characteristics of the internal surface of the cavity are
arbitrary. The radiation emitted from the black element and absorbed by the cav-
ity is
= 2
Qp1.¢ = g,y Ao AFoopdp1 (B1)

where the absorptivity a,n is the ratio of energy absorbed by the cavity to
the energy incident on the cavity from dAgp.

The energy radiated from the cavity to dAp] and absorbed is

. 2
Q.-B1 = €c,, Fo.pdc ¢ (B2)

Because both surfaces are at the same temperature, g = dpys, and QC—Bl

must equal Qpj_¢ since, from the second law of thermodynamics, there can be no
net heat transfer between bodies at the same temperature. Thus,

(B3)

A reciprocal relation between the reflectivities can also be obtained. Con-
sider the isothermal cavity of figure 2 as containing two flat black elements
dAp, and dABz in addition to the cavity. The heat transferred from dAp; to

dABZ by reflection from dA is

_ 2
9B1-m2 = 41 ¥ Feoom PePe, g (Be)

Conversely, the radiation from dAg, to dAp) by reflection from dA is

- 2
Up2-m1 = B2 ¥ Foopp AAcPen, (BS)

Because no net heat may be transferred between dAg, and dAp, when they are at

the same temperature, and the direct interchange has been shown to be equal, it
follows that Qpi.pe = Qpo_p; and

z = 2
Pe,nton TFeem = P,y Yo (B6)

For the geometry considered here and with the reflectivity ratios previously
defined,
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D]]t i
(pﬂ';ﬂ)f

which reduces to

24
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!

p

cos n' cos 7 dq4:dq = ( L) )
P 1
MM
f
Pty Poun!

(pn',n)f (pn,n'>f

P

W

cos 1 cos 7'

dn dn’
4

(B7)

(B3)
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Figure 9. ~ Radiant heat interchange among a black surface, a directional
surface, and the environment.
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